30 resultados para Inoculation

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arrangement of microtubules in soybean (Glycine max) cells was examined during compatible and incompatible interactions of hypocotyls of soybean cv. Harosoy (susceptible) and cv. Haro 1272 (resistant) with race 1 of the soybean-specific pathogen Phytophthora sojae. Both reaction types were similar during the first 3 h after zoospore inoculation in terms of the number of cells penetrated, and depth penetrated into the cortex. By 3 h postinoculation, clear differences had developed between the two interaction types: incompatible interactions were characterized by a hypersensitive response that was confined to single penetrated cells; while compatibly responding cells appeared unchanged. Both types of response were characterized by autofluorescence of cell walls or cytoplasm and, at 6 h after inoculation, complete disorganization of cell cytoplasm. Reorientation and loss of microtubules was seen in the early stages of the incompatible interaction in association with cellular hypersensitivity, but not in compatible responses. In cells adjacent to those that reacted hypersensitively, there was little evidence of change in microtubule orientation. Treatment of hypocotyls with the microtubule depolymerizer oryzalin prior to inoculation did not alter the compatible response, but led to breakdown of the incompatible response. Changes in microtubule orientation and state are thus among the first structural changes that are visible within cells during incompatibility in this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabidopsis thaliana ecotype Columbia-0 was transformed with a green fluorescent protein (GFP) gene under control of a phenylalanine ammonia-lyase (PAL) promoter. PAL is a key enzyme of the phenylpropanoid pathway and is induced to high levels during plant stress. Constitutive expression of PAL1 promoter-controlled GFP occurred in vascular tissues within stems, leaves and roots and in developing flowers. PAL1 promoter–GFP expression was examined in leaves of transgenic plants subjected to an abiotic elicitor, mechanical wounding or to inoculation with the pathogens Pseudomonas syringae pv. tomato or Peronospora parasitica. Wounding of leaves and treatment with an abiotic elicitor and compatible interactions produced low to moderate levels of GFP. However, in incompatible interactions there were high levels of GFP produced. In incompatible interactions, the intensity of GFP fluorescence was similar to that produced in transgenic plants expressing GFP driven by the CaMV promoter. The bright green fluorescence produced in live cells and tissues was readily visualised using conventional fluorescence microscopy and was quantified using spectroflourometry. This is the first report of the use of GFP as a reporter of defence gene activation against pathogens. It has several advantages over other reporter genes including real time analysis of gene expression and visualisation of defence gene activation in a non-invasive manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of reactions to inoculation with Phytophthora cinnamomi ranging from high susceptibility to moderate resistance were found in 20 ecotypes of Arabidopsis thaliana. P. cinnamomi zoospores successfully colonised both root and leaf tissue of Arabidopsis and sporulation in the form of chlamydospores and sporangia occurred in leaves and roots of each ecotype but the number varied considerably between ecotypes. In the more susceptible ecotypes, colonisation was characterised by rapid intercellular growth and sporulation of the pathogen from 48 h post inoculation. In less susceptible ecotypes, P. cinnamomi was limited to a defined region within tissues. In response to P. cinnamomi infection, several ecotypes expressed active defence responses in both root and leaf tissue. Callose formation was closely associated with lesion restriction as was the production of the reactive oxygen species, hydrogen peroxide. The oxidative burst was not limited to the site of pathogen ingress but also occurred in distant, uninfected tissues. We have characterised an Arabidopsis–P. cinnamomi system that will be useful for further studies of active resistance mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field-scale remediation of oil-contaminated soils from the Liaohe Oil Fields in China was examined using composting biopiles in windrow technology. Micronutrient-enriched chicken excrement and rice husk were applied as nutrition and a bulking agent. The lipase activities of indigenous micro-organisms were analyzed, and three indigenous fungi with high lipase activities was identified. An inoculum consisting of the three indigenous fungi and one introduced (exotic) fungus was applied to four different types of oil-contaminated soils. The results showed that the inoculum of indigenous fungi increased both the total colony-forming units (TCFU) and increased the rate of degradation of total petroleum hydrocarbons (TPH) in all contaminated soils but at different rates. In sharp contrast to other studies, the introduction of exotic micro-organisms did not improve the remediation, and suggests that inoculation of oil-contaminated sites with nonindigenous species is likely to fail. On the other hand, indigenous genera of microbes were found to be very effective in increasing the rate of degradation of TPH. The degradation of TPH was mainly controlled by the compositions of aromatic hydrocarbons and asphaltene and resin. Between 38 to 57% degradation of crude oils (with densities ranging from 25,800 to 77,200 mg/kg dry weight) in contaminated soils was achieved after 53 days of operation. The degradation patterns followed typical first-order reactions. We demonstrate that the construction and operation of field-scale composting biopiles in windrows with passive aeration is a cost-effective bioremediation technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potassium phosphonate (phosphite) is widely used in the management of Phytophthora diseases in agriculture, horticulture and natural environments. The Austral grass tree, Xanthorrhoea australis, a keystone species in the dry sclerophyll forests of southern Australia, is susceptible to Phytophthora cinnamomi, but is protected by applications of phosphite. We examined the effect of phosphite application on the infection of X. australis seedlings and cell suspension cultures by zoospores of P. cinnamomi. Phosphite induced more intense cellular responses to pathogen challenge and suppressed pathogen ingress in both seedlings and cell cultures. In untreated X. australis seedlings, hyphal growth was initially intercellular, became intracellular 24 h after inoculation, and by 48 h had progressed into the vascular tissue. In phosphite-treated seedlings, growth of P. cinnamomi remained intercellular and was limited to the cortex, even at 72 h after inoculation. The cell membrane retracted from the cell wall and phenolic compounds and electron dense substances were deposited around the wall of infected and neighbouring cells. Suspension cells were infected within 6 h of inoculation. Within 24 h of inoculation, untreated cells were fully colonised, had collapsed cytoplasm and died. The protoplast of phosphite-treated suspension cells collapsed within 12 h of inoculation, and phenolic material accumulated in adjacent, uninfected cells. No anatomical response to phosphite treatment was observed before infection of plant tissues, suggesting that the phosphite-associated host defence response is induced following pathogen challenge. Anatomical changes provide evidence that phosphite stimulates the host defence system to respond more effectively to pathogen invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White blister caused by oomycete Albugo candida (Pers. Ex. Lev.) Kuntze, (AC), is an important disease affecting many cruciferous hosts, including vegetable brassicas. The outbreaks of white blister in broccoli and cauliflower crops (Brassica oleracea var. italica and var. botrytis) in Southern Australia in the last three years led to restrictions on movement of fresh produce and seedlings from the disease-affected areas. Current classification of AC races is based on physiologic specialisation of this pathogen. Race 9 has been identified to cause white blister on B. oleracea in the USA. We report on specialisation of AC causing disease in Victorian broccoli crops and the use of molecular tools for the separation of AC races. In a glasshouse, 12 Brassicaceae species/varieties replicated 6 times, were inoculated twice at the fully developed cotyledon stage with a distilled water suspension of zoosporangia (1x104 per ml) collected from a single broccoli leaf. Two weeks after inoculation the incidence of white blister on cotyledons and seedling leaves of cauliflower, broccoli, black mustard and Indian mustard was 79.7, 78.4, 73.7 and 6.9% respectively. Cabbage plants were symptomless indicating that further specialisation of the pathogen may have occurred in Australia. High disease incidence among black mustard plants shows that the Australian isolate differs from overseas AC race 9. The interaction of a number of B. oleracea varieties to a range of AC isolates from various hosts will be investigated. Degenerate primers are now being used to amplify actin and β-tubulin genes to identify race specific polymorphisms in AC isolates from three different hosts (wild radish, Chinese cabbage, and broccoli). Differing PCR amplification efficiencies from broccoli and wild radish isolates using degenerate actin primers indicates sequence differences in the two isolates. The fragments are now being cloned and sequenced for race comparison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clubroot, caused by Plasmodiophora brassicae, is the most devastating soil-borne disease of vegetable brassicas. It occurs all over the world and is responsible for crop losses of up to 10% every year. In Australia, the disease is being managed effectively with chemicals and cultural practices, but ideally control can be improved in the long term by the introduction of resistant cultivars. The life cycle ofP. brassicae and mode of action of plant resistance has not been fully elucidated because of the technical difficulties of working with an obligate, soil-borne plant pathogen. However, Arabidopsis thaliana, which is a host ofP. brassicae, has great potential as a model system for studying the life cycle, the infection process and development of resistance. We have developed a sand-liquid-culture system for growing Arabidopsis that allows easy observation of all life stages and, most importantly, the primary plasmodial stages within the root hair. The method was first optimised for observations of the lifecycle of the pathogen in a susceptible Arabidopsis ecotype (Col-3) where all stages of the lifecycle have now been observed and characterised. Further screening of Arabidopsis ecotypes for disease resistance has utilised one of the most virulent Australian pathotypes of brassica (ECD number 16/19/31). To date, Arabidopsis ecotype Ta-0 has shown a level of tolerance to the disease even though the roots get infected. It has been reported earlier that resistance toP. brassicae in Arabidopsis is due to one or a small number of genes. To examine changes in gene expression during the early, critical stages of infection, RNA was extracted from the susceptible and resistant ecotypes at two time points, 4 days and 17 days after inoculation. Microarray analysis will be used to investigate genome wide changes in gene expression during infection but also to identify candidate genes that may confer resistance to Australian isolates of the pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have found that UV-C treatment of Arabidopsis thaliana induces resistance to the biotrophic pathogen Hyaloperonospora parasitica, and our data suggest UV induced DNA photoproducts are involved (see accompanying abstract by K.G. McKenzie et al.). To address the potential role of DNA damage, we have examined the effect of mutations in nucleotide excision repair (uvr1-1), photoreactivation of cyclobutane pyrimidine dimers (uvr2-1) or flavonoid production (tt5) on the resistance of Arabidopsis to the pathogen with or without pre-inoculation treatment with UV-C. In the mutant backgrounds, UV-C induced pathogen resistance (as measured by decreased conidiophore formation) to the same degree as in the wildtype plants, but much lower UV doses were required (e.g., 100 Jm-2 in the mutant vs. 400 Jm-2 in the wildtype). This is the result expected if damage to DNA rather than a non DNA target is involved. Interestingly, in the absence of UV-C, the tt5 mutation alone resulted in a slight increase in resistance. However, when coupled with uvr1-1, resistance was enhanced to an even greater extent. Remarkably, the tt5 uvr1-1 uvr2-1 triple mutant was completely resistant to the pathogen. Since tt5 mutants are sensitive to reactive oxygen species, which can cause DNA damage susceptible to nucleotide excision repair, our results suggest that in addition to UV photoproducts, an accumulation of endogenous oxidative DNA damage may also trigger resistance to the pathogen. We are currently examining pathogen resistance in other DNA repair deficient mutants, and quantifying UV-C-induced DNA damage in Arabidopsis in order to assess the relationship between damage levels and the extent of resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodiophora brassicae is a protistan pathogen that attacks roots of brassicaceous plant species causing devastating disease. Resistance is characterised by restriction of the pathogen and susceptibility by the development of severely malformed roots (‘clubroots’) and stunting of the plant that is associated with alterations in the synthesis of cytokinin and auxin hormones. We are examining the susceptible response in Arabidopsis and whether suppression of key resistance factors by the pathogen contributes to susceptibility. The interaction is being studied using a number of approaches including microscopy of the infection process and development of the pathogen within roots and host gene expression analysis. Quantitative PCR was used to confirm the timing of infection of roots and showed that infection occurred at day four and colonisation increased thereafter to high levels by 23 days after inoculation by which time roots were showing systemic abnormalities. To investigate the basis of this compatible interaction we have conducted a time course experiment following infection of a susceptible ecotype of Arabidopsis (Col-0) to examine whole genome geneexpression changes in the host. Differential gene expression analysis of inoculated versus control roots showed that a higher number of genes had altered expression levels at day four compared to that at day seven and at day ten. At day four the expression levels of several genes known to be important for recognition and signal transduction in resistant interactions and genes involved in the biosynthesis of lignin, phenylpropanoids and ethylene were suppressed. Suppression by P. brassicae of specific plant defence responses appears to be a key component of susceptibility in this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to their sessile nature, plants have evolved mechanisms to minimise the damaging effects of abiotic and biotic stresses. Attack by pathogenic fungi, viruses and bacterium is a major type of biotic stress. To resist infection, plants recognise invading pathogens and induce disease resistance through multiple signal transduction pathways. In addition, appropriate stimulation can cause plants to increase their resistance to future pathogen attack. We have found that exposure to non-lethal doses of UV-C (254 nm) renders a normally susceptible ecotype of Arabidopsis thaliana resistant to the biotrophic Oomycete pathogen Hyaloperonospora parasitica. The UV treatment induces an incompatible response in a dose-dependent fashion, and is still effective upon pathogen inoculation up to seven days after UV exposure. The degree of resistance diminishes with time but higher doses result in greater levels of resistance, even after seven days. Furthermore, the effect is systemic, occurring in parts of the plant that have not been irradiated. Incubation in the dark post?irradiation and prior to infection reduces the UV dose required to generate a specific level of pathogen resistance without affecting the duration of resistance. These observations, plus the inability of plants to photoreactivate UV photoproducts in the dark, strongly suggest that DNA damage induces the resistance phenotype. Currently, we are assessing the influence of DNA repair defects on UV-induced resistance, following the expression of a number of defence?related genes post-UV-C irradiation, and assessing the effect of UV in plant mutants deficient in specific signalling molecules involved in resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the interaction of pathogens with plant roots is often complicated by the growth of plants in a soil substrate. A soil-free plant growth system (SPS) was developed that removes the need for a substrate while supporting the growth of seedlings in a nutrient rich, oxygenated environment. The model legume Lupinus angustifolius was used to compare the growth of seedlings within soil and the SPS. Seedlings grown under both conditions were similar in morphology, anatomy and health (measured by leaf chlorophyll abundance) and importantly there was little difference in root growth and development although straighter and fuller root systems were achieved in the SPS. The ease of access to the root system proved efficient for the analysis of root and pathogen interactions with no interference from soil or adhering particulate matter. Following inoculation of L. angustifolius roots with Phytophthora cinnamomi the host/pathogen interaction was easily observed and tissues sampled undamaged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling.